Numerical Integration with Complex Jacobi Weight Function

نویسندگان

  • Gradimir V. Milovanovic
  • Aleksandar S. Cvetkovic
چکیده

In this paper we study the numerical integration on (−1, 1) with respect to the Jacobi weight function (1−x)(1+x), where α and β are complex parameters. The problem arises in some applications of computational models in quantum mechanics. We discuss two methods for integration. One is suitable for integration of analytic functions and the other is applicable to the general Riemann integrable functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0898-1221(96)00223-4

Abs t r ac t -An account is given of the role played by moments and modified moments in the construction of quadrature rules, specifically weighted Newton-Cotes and Gaussian rules. Fast and slow Lagrange interpolation algorithms, combined with Gaussian quadrature, as well as linear algebra methods based on moment equations, axe described for generating Newton-Cotes formulae. The weaknesses and ...

متن کامل

Gauss-Hermite interval quadrature rule

The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...

متن کامل

Gauss-Jacobi-type quadrature rules for fractional directional integrals

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...

متن کامل

Asymptotics for the simplest generalized Jacobi polynomials recurrence coefficients from Freud’s equations: numerical explorations

Generalized Jacobi polynomials are orthogonal polynomials related to a weight function which is smooth and positive on the whole interval of orthogonality up to a finite number of points, where algebraic singularities occur. The influence of these singular points on the asymptotic behaviour of the recurrence coefficients is investigated. AMS(MOS) subject classification. 42C05.

متن کامل

Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials

Laguerre and Laguerre-type polynomials are orthogonal polynomials on the interval [0,∞) with respect to a weight function of the form w(x) = xαe−Q(x), Q(x) = m ∑ k=0 qkx , α > −1, qm > 0. The classical Laguerre polynomials correspond to Q(x) = x. The computation of higher-order terms of the asymptotic expansions of these polynomials for large degree becomes quite complicated, and a full descrip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008